Problem 1.42

Prove that the transformations from rectangular to polar coordinates and vice versa are given by the four equations (1.37). Explain why the equation for ϕ is not quite complete and give a complete version.

Solution

Cartesian coordinates (x, y) are used to represent the location of a point. x represents the horizontal distance from the origin, and y represents the vertical distance from the origin.

Alternatively, polar coordinates (r, ϕ) can be used to represent the location of a point.

r is related to x and y by the Pythagorean theorem.

$$
r^{2}=x^{2}+y^{2}
$$

Taking the square root of both sides gives

$$
r= \pm \sqrt{x^{2}+y^{2}}
$$

Only the positive root is needed; the negative root is redundant.

$$
r=\sqrt{x^{2}+y^{2}}
$$

Based on the definitions of the trigonometric functions,

$$
\begin{array}{ll}
\cos \phi=\frac{x}{r} \quad \rightarrow \quad x=r \cos \phi \\
\sin \phi=\frac{y}{r} \quad \rightarrow \quad y=r \sin \phi \\
\tan \phi=\frac{y}{x} \quad \Rightarrow \quad \phi= \begin{cases}\tan ^{-1}\left(\frac{y}{x}\right) & \text { if } x \text { and } y \text { are positive (Quadrant I) } \\
\pi+\tan ^{-1}\left(\frac{y}{x}\right) & \text { if } x \text { is negative and } y \text { is positive (Quadrant II) } \\
\pi+\tan ^{-1}\left(\frac{y}{x}\right) & \text { if } x \text { and } y \text { are negative (Quadrant III) } \\
\tan ^{-1}\left(\frac{y}{x}\right) & \text { if } x \text { is positive and } y \text { is negative (Quadrant IV) }\end{cases}
\end{array}
$$

These conditions for the last equation are due to the fact that the inverse tangent only yields a value for ϕ between $-\pi / 2$ and $\pi / 2$. This is fine if the point lies in the first or fourth quadrants. If the point lies in the second or third quadrants, though, then π has to be added to compensate for this limited range.

